Finding Limits Algebraically - Classwork

We are going to now determine limits without benefit of looking at a graph, that is $\lim_{x\to a} f(x)$.

There are three steps to remember:

- 1) plug in a
- 2) Factor/cancel and go back to step 1
- 3) ∞ , $-\infty$, or DNE

Example 1) find $\lim_{x\to 2} x^2 - 4x + 1$

You can do this by plugging in.

Example 2) find $\lim_{x \to 2} \frac{2x-6}{x-2}$

You can also do this by plugging in.

Example 3) find $\lim_{x\to 2} \frac{x^2 - 2x - 8}{x^2 - 4}$

Plug in and you get $\frac{0}{0}$ - no good So attempt to factor and cancel Example 4) find $\lim_{x\to 1} \frac{x^2 - 2x + 1}{x^3 - 1}$

Plug in and you get $\frac{0}{0}$ - no good

So attempt to factor and cancel

If steps 1 and 2 do not work (you have a zero in the denominator, your answer is one of the following:

00

_00

Does Not Exist (DNE)

To determine which, you must split your limit into two separate limits: $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$. Make a sign chart by plugging in a number close to a on the left side and determining its sign. You will also plug in a number close to a on the right side and determine its sign. Each of these will be some form of ∞ , either positive or negative. Only if they are the same will the limit be ∞ or $-\infty$.

What this says is that in this case, $\lim_{x\to a^-} f(x) = \text{some form of } \infty$ and $\lim_{x\to a^+} f(x) = \text{some form of } \infty$ You need to check whether they are the same.

Example 5) find $\lim_{x\to 2} \frac{2x+5}{x-2}$

Step 1) Plug in $-\frac{9}{0}$ - no good Step 2) - No factoring/cancel So your answer is ∞ , $-\infty$ or DNE

Example 6) find
$$\lim_{x\to 0} \frac{4}{x^2}$$

Step 1) Plug in
$$-\frac{4}{0}$$
 - no good Step 2) - No factoring/cancel So your answer is ∞ , $-\infty$ or DNE

Example 7) find
$$\lim_{x \to 3} \frac{x^2 + 2x - 3}{x^2 + 6x + 9}$$

Example 8) find
$$\lim_{x\to 2} \frac{2x-4}{x^3-6x^2+12x-8}$$

Example 9)
$$f(x) = \begin{cases} x^2 - 4, x \ge 1 \\ -2x - 1, x < 1 \end{cases}$$
 find $\lim_{x \to 1} f(x)$

Example 10)
$$f(x) =\begin{cases} \frac{x}{x-2}, & x \ge 2\\ \frac{x-3}{x-2}, & x < 2 \end{cases}$$
 find $\lim_{x \to 2} f(x)$

Example 11)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

Finally, we are interested also in problems of the type: $\lim_{x \to a} f(x)$. Here are the rules:

Write f(x) as a fraction. 1) If the highest power of x appears in the denominator (bottom heavy), $\lim_{x \to \infty} f(x) = 0$

- 2) If the highest power of x appears in the numerator (top heavy), $\lim_{x\to\pm\infty} f(x) = \pm\infty$ plug in very large or small numbers and determine the sign of the answer
- 3) If the highest power of x appears both in the numerator and denominator

(powers equal), $\lim_{x\to \pm \infty} f(x) = \frac{\text{coefficient of numerator's highest power}}{\text{coefficient of denominator's highest power}}$

Example 12)
$$\lim_{x \to \infty} \frac{4x^2 + 50}{x^3 - 85}$$

Example 13)
$$\lim_{x \to \infty} \frac{4x^3 - 5x^2 + 3x - 1}{5x^3 - 7x - 25}$$
 Example 14) $\lim_{x \to \infty} \frac{3x^3 - 23}{4x - 1}$

Example 14)
$$\lim_{x \to \infty} \frac{3x^3 - 23}{4x - 1}$$

Example 15)
$$\lim_{x \to \infty} \frac{4x - 5x^2 + 3}{\frac{1}{1}x}$$
 Example 16) $\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x}}{2x + 1}$

Example 16)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x}}{2x + 1}$$

Example 17)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x}}{2x + 1}$$