Area accumulation functions - an introduction

Given a function $f(x)$, we create a new function $F(x)$ by evaluating how much area is accumulated under $f(x)$.

1. Example:

(a) Define $F(x)=\int_{0}^{x} f(t) d t$. Evaluate the following:

$$
\begin{array}{ll}
F(0)= & F(2)= \\
F(1)= & F(-1)=
\end{array}
$$

(b) Shade in and find the area represented by $F(3)-F(1)$.
(c) Find a formula for $F(x)$ between $x=0$ and $x=1$
(d) Give two values at which $F(x)=0$. (Hint: assume the graph continues to the right.)
(e) Which is larger: $F(3)$ or $F(4)$? Explain.
(f) Which is larger: $F(5)$ or $F(6)$? Explain.
(g) Give open intervals on which $F(x)$ is increasing. Explain.
(h) $F(x)$ has a local extremum at $x=5$. Is it a maximum or a minimum? Explain.
(i) $F(x)$ is increasing at both $x=1$ and $x=2$. At which value is $F(x)$ increasing faster? Explain.
2. g is a piecewise function composed of line segments and a semi-circle.

(a) $G(x)=\int_{4}^{x} g(t) d t$
$G(4)=$
$G(12)=$
$G(10)=$

$$
G(0)=
$$

(b) On what open intervals is $G(x)$ increasing? decreasing?
(c) Find all local extreme values of $G(x)$ by determining where $G(x)$ switches from increasing to decreasing and from decreasing to increasing.
(d) What are the critical numbers of $G(x)$?
(e) On the interval from $[0,12]$ where is $G(x)$ increasing fastest?
3. The peak of Boulder's epic rainstorm of 2013 occured between 4 pm, Sept 12, and 4am, Sept 13. During those 12 hours the rate of rainfall can be modelled by $r(t)=\frac{240 e^{2 t / 3}}{\left(60+e^{2 t / 3}\right)^{2}}$ in inches per hour, where $t=0$ represents 4pm on Sept 12.

Let $R(x)=\int_{0}^{x} \frac{240 e^{2 t / 3}}{\left(60+e^{2 t / 3}\right)^{2}} d t$.
(a) Use the graph to estimate $R(4)$. What does it represent? (include units)
(b) Use technology to calculate $R(12)$. What does it represent? (include units)
(c) What does $R(x)$ represent?
(d) Where is $R(x)$ changing the fastest?

