Differentiation by the Chain Rule - Classwork

Suppose you were asked to take the derivatives of the following. Could you do so?

a)
$$f(x) = (2x+5)^2$$
 b) $f(x) = (2x+5)^3$ c. $f(x) = (2x+5)^6$

b)
$$f(x) = (2x+5)^3$$

c.
$$f(x) = (2x+5)^6$$

$$d) f(x) = \sqrt{2x+5}$$

a) causes no problem. b) is also not a problem but multiplying it out so you can take the derivative is a bit of a pain. You are capable of doing c) but clearly do not wish to. But d) can't be done with the knowledge you have.

We now introduce a method of taking derivatives of more complicated expressions. It is called the chain rule. If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ or equivalently, $\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$.

Example 1) If $f(x) = (2x + 5)^2$, find f'(x) without and with the chain rule. Show they are equivalent. a) without chain rule b) with chain rule

Example 2) If $f(x) = (2x+5)^3$, find f'(x) without and with the chain rule. Show they are equivalent. b) with chain rule a) without chain rule

Example 3) If $f(x) = (2x+5)^{10}$, find f'(x)Example 4) If $f(x) = \sqrt{2x+5}$, find f'(x)

Example 5) Find y' if $y = \frac{1}{4x-3}$

Example 6) Find y' if $y = (3x^2 - 2x + 1)^3$

Differentiation by the Chain Rule - Homework

Find the derivatives of the following:

1.
$$y = (3x - 8)^4$$

2.
$$y = (3x^2 + 2)^5$$

3.
$$y = 4(x^2 + x - 1)^{10}$$

4.
$$y = -5(4 - 9x)^{3/2}$$

5.
$$y = \frac{1}{3x - 2}$$

6.
$$y = \frac{-1}{\left(x^2 - 5x - 6\right)^2}$$

7.
$$y = \left(\frac{2}{2-x}\right)^2$$

8.
$$y = \frac{4x}{(x+1)^2}$$

$$9. \ \ y = \frac{-3}{\left(x^3 - x^2 + 3\right)^3}$$

10.
$$y = x^3(5x-1)^4$$

11.
$$y = \sqrt{1-t}$$

12.
$$y = \sqrt[3]{3x^3 - 4x + 2}$$

13.
$$y = \frac{2}{\sqrt{2x+3}}$$

14.
$$y = \frac{-1}{\sqrt{x+1}}$$

15.
$$y = \sqrt{\frac{3x}{2x - 3}}$$

Differentiation - Chain Rule

Period____

Differentiate each function with respect to x.

1)
$$y = (x^3 + 3)^5$$

2)
$$y = (-3x^5 + 1)^3$$

3)
$$y = (-5x^3 - 3)^3$$

4)
$$y = (5x^2 + 3)^4$$

5)
$$f(x) = \sqrt[4]{-3x^4 - 2}$$

6)
$$f(x) = \sqrt{-2x^2 + 1}$$

7)
$$f(x) = \sqrt[3]{-2x^4 + 5}$$

8)
$$y = (-x^4 - 3)^{-2}$$

Worksheet # 13: Chain Rule

- 1. (a) Carefully state the chain rule using complete sentences.
 - (b) Suppose f and g are differentiable functions so that f(2) = 3, f'(2) = -1, $g(2) = \frac{1}{4}$, and g'(2) = 2. Find each of the following:
 - i. h'(2) where $h(x) = \sqrt{[f(x)]^2 + 7}$.
 - ii. l'(2) where $l(x) = f(x^3 \cdot g(x))$.
- 2. Given the following functions: $f(x) = \sec(x)$, and $g(x) = x^3 2x + 1$. Find:
 - (a) f(g(x)) =
 - (b) f'(x) =
 - (c) g'(x) =
 - (d) f'(g(x)) =
 - (e) $(f \circ g)'(x) =$
- 3. Differentiate each of the following and simplify your answer.
 - (a) $f(x) = \sqrt[3]{2x^3 + 7x + 3}$
 - (b) $g(t) = \tan(\sin(t))$
 - (c) $h(u) = \sec^2(u) + \tan^2(u)$
 - (d) $f(x) = xe^{(3x^2+x)}$
 - (e) $g(x) = \sin(\sin(\sin(x)))$
- 4. Find an equation of the tangent line to the curve at the given point.
 - (a) $f(x) = x^2 e^{3x}$, x = 2
 - (b) $f(x) = \sin(x) + \sin^2(x), x = 0$
- 5. Compute the derivative of $\frac{x}{x^2+1}$ in two ways:
 - (a) Using the quotient rule.
 - (b) Rewrite the function $\frac{x}{x^2+1} = x(x^2+1)^{-1}$ and use the product and chain rule.

Check that both answers give the same result.

- 6. If $h(x) = \sqrt{4+3f(x)}$ where f(1) = 7 and f'(1) = 4, find h'(1).
- 7. Let $h(x) = f \circ g(x)$ and $k(x) = g \circ f(x)$ where some values of f and g are given by the table

x	f(x)	g(x)	f'(x)	g'(x)
-1	4	4	-1	-1
2	3	4	3	-1
3	-1	-1	3	-1
4	3	2	2	-1

Find: h'(-1), h'(3) and k'(2).

- 8. Find all x values so that $f(x) = 2\sin(x) + \sin^2(x)$ has a horizontal tangent at x.
- 9. Comprehension check for derivatives of trigonometric functions:
 - (a) True or False: If $f'(\theta) = -\sin(\theta)$, then $f(\theta) = \cos(\theta)$.
 - (b) True or False: If θ is one of the non-right angles in a right triangle and $\sin(\theta) = \frac{2}{3}$, then the hypotenuse of the triangle must have length 3.
 - (c) Differentiate both sides of the identity $tan(x) = \frac{\sin(x)}{\cos(x)}$ to obtain a new trigonometric identity.

Differentiation by the Chain Rule - Classwork

Suppose you were asked to take the derivatives of the following. Could you do so?

a)
$$f(x) = (2x+5)^2$$

b)
$$f(x) = (2x+5)^3$$

a)
$$f(x) = (2x+5)^2$$
 b) $f(x) = (2x+5)^3$ c. $f(x) = (2x+5)^6$

$$d) f(x) = \sqrt{2x + 5}$$

a) causes no problem. b) is also not a problem but multiplying it out so you can take the derivative is a bit of a pain. You are capable of doing c) but clearly do not wish to. But d) can't be done with the knowledge you have.

We now introduce a method of taking derivatives of more complicated expressions. It is called the chain rule. If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ or equivalently, $\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$.

Example 1) If $f(x) = (2x+5)^2$, find f'(x) without and with the chain rule. Show they are equivalent

a) without chain rule

b) with chain rule

Example 2) If $f(x) = (2x+5)^3$, find f'(x) without and with the chain rule. Show they are equivalent.

a) without chain rule

b) with chain rule

Example 3) If $f(x) = (2x+5)^{10}$, find f'(x)

Example 4) If
$$f(x) = \sqrt{2x+5}$$
, find $f'(x)$

Example 5) Find y' if $y = \frac{1}{4x-3}$

Example 6) Find y' if
$$y = (3x^2 - 2x + 1)^3$$

Differentiation by the Chain Rule - Homework

Find the derivatives of the following:

1.
$$y = (3x - 8)^4$$

2.
$$y = (3x^2 + 2)^5$$

3.
$$y = 4(x^2 + x - 1)^{10}$$

$$y' = 40(x^2 + x - 1)^{10}(2x + 1)$$
Chart

4.
$$y = -5(4 - 9x)^{\frac{3}{2}}$$

5.
$$y = \frac{1}{3x-2} - (2x-2)^{-1}$$

6.
$$y = \frac{-1}{\left(x^2 - 5x - 6\right)^2}$$

7.
$$y = \left(\frac{2}{2-x}\right)^2 - 4(2-x)^3$$

8.
$$y = \frac{4x}{(x+1)^2}$$

9.
$$y = \frac{-3}{\left(x^3 - x^2 + 3\right)^3}$$

10.
$$y = x^3 (5x-1)^4$$

11.
$$y = \sqrt{1-t}$$

13.
$$y = \frac{2}{\sqrt{2x+3}} = 2(2x+3)^{-1/2}$$
 14. $y = \frac{-1}{\sqrt{x+1}}$

12.
$$y = \sqrt[3]{3x^3 - 4x + 2}$$

$$y' = \frac{1}{3} \left(3x^3 - 4x + 2 \right)^{\frac{3}{2}} \left(9x^2 - 4 \right)$$

15.
$$y = \sqrt{\frac{3x}{2x-3}} = (3x)^2 (2x-3)^2$$
Product & Chaines

Kuta Software - Infinite Calculus

Date______Period____

Differentiation - Chain Rule

Differentiate each function with respect to x.

1)
$$y = (x^3 + 3)^5$$

$$y = 5(x^3 + 3)^4(3x^2)$$

2)
$$y = (-3x^5 + 1)^3$$

3)
$$y = (-5x^3 - 3)^3$$

4)
$$y = (5x^2 + 3)^4$$

$$y = (5x^2 + 3)^4$$

$$y = (5x^2 + 3)^4$$

$$y = (10x^2 + 3)^4$$

5)
$$f(x) = \sqrt[4]{-3x^4 - 2}$$

$$\int_{-3}^{4} (x)^{-3} \frac{1}{4} \left(-3x^4 - 2\right)^{-3/4} \left(-12x^3\right)$$

6)
$$f(x) = \sqrt{-2x^2 + 1}$$

7)
$$f(x) = \sqrt[3]{-2x^4 + 5}$$

8)
$$y = (-x^4 - 3)^{-2}$$

$$y' = -2(-x^4 - 3)^{-2}(-4/x^3)$$