Multiple Choice Problems on Integrals 4.19

1102 (AP). For any real number b, $\int_a^b |2x| dx$ is

- A) -b|b|
- C) $-b^2$
- D) b|b|
- E) None of these

1103 (AP). Let f and g have continuous first and second derivatives everywhere. If $f(x) \leq g(x)$ for all real x, which of the following must be true?

- I) $f'(x) \le g'(x)$ for all real xII) $f''(x) \le g''(x)$ for all real x
- III) $\int_0^1 f(x) \ dx \le \int_0^1 g(x) \ dx$
- A) None
- B) I only
- C) III only
- D) I and II
- E) I, II, and III

1104 (AP). Let f be a continuous function on the closed interval [0,2]. If $2 \le f(x) \le 4$, then the greatest possible value of $\int_{0}^{2} f(x) dx$ is

- A) 0
- B) 2
- C) 4
- D) 8
- E) 16

1105 (AP). If f is the continuous, strictly increasing function on the interval [a, b] as shown below, which of the following must be true?

I) $\int_a^b f(x) \ dx < f(b)(b-a)$ II) $\int_a^b f(x) \ dx > f(a)(b-a)$ III) $\int_a^b f(x) \ dx = f(c)(b-a) \text{ for some } c \text{ in } [a,b].$

- A) I only
- B) II only
- C) III only
- D) I and Π
- E) I, II, and III

1106 (AP). Which of the following definite integrals is not equal to zero?

A) $\int_{0}^{\pi} \sin^{3} x \ dx$ D) $\int_{0}^{\pi} \cos^3 x \ dx$ C) $\int_0^{\pi} \cos x \ dx$

B) $\int_{-\pi}^{\pi} x^2 \sin x \ dx$ E) $\int_{-\pi}^{\pi} \cos^2 x \ dx$

Archimedes will be remembered when Aeschylus is forgotten, because languages die and mathematical ideas do not. -G. H. Hardy

1114. The acceleration of a particle moving along a straight line is given by a = 6t. If, when t=0 its velocity v=1 and its distance s=3, then at any time t the position function is given

- A) $s = t^3 + 3t + 1$
- B) $s = t^3 + 3$
- C) $s = t^3 + t + 3$
- D) $s = \frac{1}{3}t^3 + t + 3$
- E) $s = \frac{1}{3}t^3 + \frac{1}{2}t^2 + 3$

1115. If the displacement of a particle on a line is given by $s=3+(t-2)^4$, then the number of times the particle changes direction is

- A) 0
- B) 1
- D) 3
- E) None of these

1116. $\int_0^{\pi/2} \cos^2 x \sin x \ dx =$

- A) -1 B) $-\frac{1}{3}$
- C) 0
- D) $\frac{1}{3}$
- E) 1

1117. $\int_{0}^{1} (3x^{2} - 2x + 3) dx =$

- A) 0
- B) 5
- C) 3
- D) 8
- E) None of these

1118. $\int_{1}^{e} \left(x - \frac{1}{2x}\right) dx =$

- A) $\frac{1}{2}e^2$ B) $\frac{1}{2}e^2 + 1$
- C) $\frac{1}{2}(e^2+1)$ D) $\frac{1}{2}(e^2-1)$
- E) None of these

1119. $\int_0^1 (2-3x)^5 \ dx =$

- A) $-\frac{1}{2}$
- B) $\frac{1}{6}$
- C) $\frac{1}{2}$ D) $-\frac{1}{18}$
- E) None of these